A class of inequalities relating degrees of adjacent nodes to the average degree in edge-weighted uniform hypergraphs

نویسندگان

  • Peter D. Johnson
  • R. N. Mohapatra
چکیده

In 1986, Johnson and Perry proved a class of inequalities for uniform hypergraphs which included the following: for any such hypergraph, the geometric mean over the hyperedges of the geometric means of the degrees of the nodes on the hyperedge is no less than the average degree in the hypergraph, with equality only if the hypergraph is regular. Here, we prove a wider class of inequalities in a wider context, that of edge-weighted uniform hypergraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial degree bounded edge packing problem for graphs and k-uniform hypergraphs

Given a graph G = (V,E) and a non-negative integer cu for each u ∈ V , Partial Degree Bounded Edge Packing (PDBEP) problem is to find a subgraph G′ = (V,E′) with maximum |E′| such that for each edge (u, v) ∈ E′, either degG′(u) ≤ cu or degG′(v) ≤ cv. The problem has been shown to be NPhard even for uniform degree constraint (i.e., all cu being equal). In this work we study the general degree co...

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs

Firstly, this paper proposes a non-uniform evolving hypergraph model with nonlinear preferential attachment and an attractiveness. This model allows nodes to arrive in batches according to a Poisson process and to form hyperedges with existing batches of nodes. Both the number of arriving nodes and that of chosen existing nodes are random variables so that the size of each hyperedge is non-unif...

متن کامل

Convergence law for hyper-graphs with prescribed degree sequences

We view hyper-graphs as incidence graphs, i.e. bipartite graphs with a set of nodes representing vertices and a set of nodes representing hyper-edges, with two nodes being adjacent if the corresponding vertex belongs to the corresponding hyper-edge. It defines a random hyper-multigraph specified by two distributions, one for the degrees of the vertices, and one for the sizes of the hyper-edges....

متن کامل

Perfect matchings in 3-partite 3-uniform hypergraphs

Let H be a 3-partite 3-uniform hypergraph with each partition class of size n, that is, a 3-uniform hypergraph such that every edge intersects every partition class in exactly one vertex. We determine the Dirac-type vertex degree thresholds for perfect matchings in 3-partite 3-uniform hypergraphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005